
Theorem 1 (Cauchy-Schwarz inequality). Given real numbers a, b, the fol-
lowing holds

2ab ≤ a2 + b2.

Proof.

0 ≤ |a− b|2 = a2 + b2 − 2ab.
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Theorem 2 (AM-GM). Given positive real numbers a1, · · · , an, the follow-
ing holds ( n∏
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Proof. We have the desired result for n = 2 in the previous theorem. Assume
that the inequality holds for n = 2k. Then, given positive real numbers
a1, · · · , a2k+1 we have( 2k∏
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In addition, the theorem above yields
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We combine the above inequalities so that we have
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Dividing by 2, we obtain the desired inequality for given a1, · · · , a2k+1 ,
namely the inequality holds for n = 2k+1. By the mathematical induction,
given positive a1, · · · , a2m with n = 2m, the inequality holds.

Next, we assume that the inequality holds for n = m ≥ 2. Then, given
positive a1, · · · , am−1, we define
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Therefore, (m−1∏
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Namely, (m−1∏
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Since the inequality holds for n = 2m, the mathematical induction guaran-
tees the inequality for n = 2m − k for k,m ∈ N with k < 2m. Hence, the
inequality holds for every n ∈ N. �

Theorem 3 (Young’s inequality for products). Given positive real numbers
x, y, p, q with 1 = 1

p + 1
q , the following holds

xy ≤ 1

p
xp +

1

q
yq.

Proof. Given positive x, y ∈ R and r, s ∈ Q with 1
r + 1

s = 1, we can set

a = x
1
r , b = y

1
s and r = 1+ m

n = n+m
n for some n,m ∈ N. Then, 1
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n+m . The previous theorem yields
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Namely,
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Next, given real number p > 1, we choose a sequence of rational numbers
ri > 1 converging to p. Then, the sequence si defined by 1

si
= 1 − 1

ri

converges to q, where 1
q = 1− 1

p . Thus, the limit location theorem implies

xy ≤ 1

p
xp +

1

q
yq = lim

1

ri
xri +

1

si
ysi .

�


